منابع مشابه
FINITE AND p-ADIC POLYLOGARITHMS
The finite logarithm was introduced by Kontsevich (under the name “The 1 1 2 logarithm”) in [Kon]. The finite logarithm is the case n = 1 of the n-th polylogarithm lin ∈ Z/p[z] defined by lin(z) = ∑p−1 k=1 z /k. In loc. cit. Kontsevich proved that the finite logarithm satisfies a 4-term functional equation, known as the fundamental equation of information theory. The same functional equation is...
متن کاملLi(p)-service? An algorithm for computing p-adic polylogarithms
We describe an algorithm for computing Coleman’s p-adic polylogarithms up to a given precision.
متن کاملLi-SERVICE? AN ALGORITHM FOR COMPUTING p-ADIC POLYLOGARITHMS
We describe an algorithm for computing Coleman’s p-adic polylogarithms up to a given precision.
متن کاملCRYSTALLINE SHEAVES, SYNTOMIC COHOMOLOGY AND p-ADIC POLYLOGARITHMS
In [BD92] (see also [HW98]), A. A. Beilinson and P. Deligne constructed the motivic polylogarithmic sheaf on PQ\{0, 1,∞}. Its specializations at primitive d-th roots of unity give the Beilinson’s elements of H M(Q(μd),Q(m)) = K2m−1(Q(μd))⊗ Q (m ≥ 1), whose images under the regulator maps to Deligne cohomology are the values of m-th polylogarithmic functions at primitive d-th roots of unity. The...
متن کاملON THE p-ADIC REALIZATION OF ELLIPTIC POLYLOGARITHMS FOR CM-ELLIPTIC CURVES
Let E be a CM-elliptic curve over Q with good ordinary reduction at a prime p ≥ 5. The purpose of this paper is to construct the p-adic elliptic polylogarithm of E, following the method of A. Beı̆linson and A. Levin. Our main result is that the specializations of this object at torsion points give the special values of the one-variable p-adic L-function of the Grössencharakter associated to E.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 2008
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000025976