Descent for l-Adic Polylogarithms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FINITE AND p-ADIC POLYLOGARITHMS

The finite logarithm was introduced by Kontsevich (under the name “The 1 1 2 logarithm”) in [Kon]. The finite logarithm is the case n = 1 of the n-th polylogarithm lin ∈ Z/p[z] defined by lin(z) = ∑p−1 k=1 z /k. In loc. cit. Kontsevich proved that the finite logarithm satisfies a 4-term functional equation, known as the fundamental equation of information theory. The same functional equation is...

متن کامل

Li(p)-service? An algorithm for computing p-adic polylogarithms

We describe an algorithm for computing Coleman’s p-adic polylogarithms up to a given precision.

متن کامل

Li-SERVICE? AN ALGORITHM FOR COMPUTING p-ADIC POLYLOGARITHMS

We describe an algorithm for computing Coleman’s p-adic polylogarithms up to a given precision.

متن کامل

CRYSTALLINE SHEAVES, SYNTOMIC COHOMOLOGY AND p-ADIC POLYLOGARITHMS

In [BD92] (see also [HW98]), A. A. Beilinson and P. Deligne constructed the motivic polylogarithmic sheaf on PQ\{0, 1,∞}. Its specializations at primitive d-th roots of unity give the Beilinson’s elements of H M(Q(μd),Q(m)) = K2m−1(Q(μd))⊗ Q (m ≥ 1), whose images under the regulator maps to Deligne cohomology are the values of m-th polylogarithmic functions at primitive d-th roots of unity. The...

متن کامل

ON THE p-ADIC REALIZATION OF ELLIPTIC POLYLOGARITHMS FOR CM-ELLIPTIC CURVES

Let E be a CM-elliptic curve over Q with good ordinary reduction at a prime p ≥ 5. The purpose of this paper is to construct the p-adic elliptic polylogarithm of E, following the method of A. Beı̆linson and A. Levin. Our main result is that the specializations of this object at torsion points give the special values of the one-variable p-adic L-function of the Grössencharakter associated to E.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 2008

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000025976